首页 关注 科技 财经 汽车

数据

旗下栏目: 业内 数据 数码 手机

企业数据分析的架构和方法

来源:ucd新闻网 作者:风云嘻嘻 人气: 发布时间:2016-11-09
摘要:对企业数据做好分析,对于促进企业的发展、为企业领导者提供决策依据有着重大作用。那么怎么做企业数据分析呢?带大家一起学习企业数据分析的架构和方法,希望能给大家一些启发。

企业在正常运营中会产生数据,而对这些数据的深层次挖掘所产生的数据分析报告,对企业的运营及策略调整至关重要。对企业数据做好分析,对于促进企业的发展、为企业领导者提供决策依据有着重大作用。那么怎么做企业数据分析呢?带大家一起学习企业数据分析的架构和方法,希望能给大家一些启发。

一、数据分析很普及

以往的数据分析在今天的各类型企业中,数据分析非常的普及,并且得到认可,数据分析的核心任务往往是支撑运营和营销,将企业内部的数据,客户的数据进行分析和总结,形成以往工作情况的量化表现,以及客户的行为趋势或特征等。

如果从更宏观的角度来认识数据要达到的目标就是希望通过数据来发现潜在的规律,进而帮助预测未来,这一点同数据挖掘的目标一致。今天我们还是在反复提到数据挖掘这个概念,我们就需要来看看数据分析都有哪些是没有做到的内容。

1、数据分散

多数数据分析岗位在公司中的岗位设置是隶属在单一业务部门中作为一个支撑岗,只有少数的公司是将数据分析作为一个独立的部门。其差异性在于,前者的数据分析所能分析的内容仅限于自身部门所输出的指标,比如投诉部门只看投诉处理过程中的数据,销售部门只看销售过程中的数据,一旦涉及到需要将各类指标汇总分析的情况,这种组织架构就会带来极大的负面影响,由于不同部门具备自己部门指标导出的权限,且与其他部门的配合并不影响绩效任务,所以这种跨部门采集数据的过程往往效率奇低。而数据分析最关键的就在于汇集更多的数据和更多的维度来发现规律,所以以往的数据分析多是做最基础的对比分析以及帕累托分析,少有使用算法来对数据进行挖掘的动作,因为越少的指标以及越少的维度将会使得算法发挥的效果越差。

2、指标维度少

在以往的企业中,数字化管理更多的体现在日常运维工作中,对于客户端的数据采集虽然从很早以前就已经开展,CRM系统的诞生已经有很久的时间了,但是一直以来客户端的数据维度却十分缺失,其原因在于上述这些途径所获得的数据多为客户与企业产生交互之后到交互结束之间的数据,但是这段时间只是这个客户日常生活中很少的一部分内容,客户在微博,微信上的行为特点,关注的领域或是品牌,自身的性格特点等,可以说一个客户真正的特点、习惯,仅通过与企业的交互是无从知晓的,因此难以挖掘出有效的结论。

3、少使用算法

在上述制约条件下,可想而知数据分析人员对于算法的使用必然是较少的,因为数据分析依赖于大量的指标、维度以及数据量,没有这三个条件是难以发挥算法的价值的,而在排除掉算法后,数据分析人员更多的只能是针对有限的数据做最为简单的分析方法,得出浅显易懂的分析结论,为企业带来的价值则可以想象。

4、数据分析系统较弱

目前的数据分析多采用excel,部分数据分析人员能够使用到R或SPSS等软件,但当数据量达到TB或PB单位级别时,这些软件在运算时将会消耗大量时间,同时原始的数据库系统在导出数据时所花费的时间也是相当长的,因此对大数据量的分析工作,常规的系统支撑难以到达要求。(目前市面上较好的有纽带线CRM系统的数据分析工具)

二、技术革命与数据挖掘

得益于互联网对于人们生活的影响逐渐增大,我们发现数据正在疯狂的增长。今天一个人一天的时间中有将近一半是在互联网中度过的,一方面这些使用互联网的交互都是能够被捕捉记录的,一方面由于碎片化时间的使用,客户与企业交互的机会也变的越来越频繁,进一步保障了客户数据的丰富。同时在大数据技术的支撑下,今天的系统能够允许对这些大规模的数据量进行高效的分析。

因此数据分析人员也能够开始使用一些较为抽象的算法来对数据做更为丰富的分析。所以数据分析正式进入到了数据分析2.0的时代,也就是数据挖掘的时代了。

三、数据处理流程

数据分析也即是数据处理的过程,这个过程是由三个关键环节所组成:数据采集,数据分析方法选取,数据分析主题选择。这三个关键环节呈现金字塔形,其中数据采集是最底层,而数据分析主题选择是最上层。

四、数据采集

数据采集即是如何将数据记录下来的环节。在这个环节中需要着重说明的是两个原则,即全量而非抽样,以及多维而非单维。今天的技术革命和数据分析2.0主要就是体现在这个两个层面上。

1、全量而非抽样

由于系统分析速度以及数据导出速度的制约,在非大数据系统支撑的公司中,做数据分析的人员也是很少能够做到完全全量的对数据进行收集和分析。在未来这将不再成为问题。

2、多维而非单维

另一方面则在于数据的维度上,这在前边同样提及。总之针对客户行为实现5W1H的全面细化,将交互过程的什么时间、什么地点、什么人、因为什么原因、做了什么事情全面记录下来,并将每一个板块进行细化,时间可以从起始时间、结束时间、中断时间、周期间隔时间等细分;地点可以从地市、小区、气候等地理特征、渠道等细分;人可以从多渠道注册账号、家庭成员、薪资、个人成长阶段等细分;原因可以从爱好、人生大事、需求层级等细分;事情可以从主题、步骤、质量、效率等细分。通过这些细分维度,增加分析的多样性,从而挖掘规律。

五、数据分析方法选取

数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。

数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。

其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。

那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。

1、常规分析方法

责任编辑:风云嘻嘻